363 research outputs found

    An Authorisation Scenario for S-OGSA

    Get PDF
    The Semantic Grid initiative aims to exploit knowledge in the Grid to increase the automation, interoperability and flexibility of Grid middleware and applications. To bring a principled approach to developing Semantic Grid Systems, and to outline their core capabilities and behaviors, we have devised a reference Semantic Grid Architecture called S-OGSA. We present the implementation of an S-OGSA observant semantically-enabled Grid authorization scenario, which demonstrates two aspects: 1) the roles of different middleware components, be them semantic or non-semantic, and 2) the utility of explicit semantics for undertaking an essential activity in the Grid: resource access control

    S-OGSA as a Reference Architecture for OntoGrid and for the Semantic Grid

    Get PDF
    The Grid aims to support secure, flexible and coordinated resource sharing through providing a middleware platform for advanced distributing computing. Consequently, the Grid’s infrastructural machinery aims to allow collections of any kind of resources—computing, storage, data sets, digital libraries, scientific instruments, people, etc—to easily form Virtual Organisations (VOs) that cross organisational boundaries in order to work together to solve a problem. A Grid depends on understanding the available resources, their capabilities, how to assemble them and how to best exploit them. Thus Grid middleware and the Grid applications they support thrive on the metadata that describes resources in all their forms, the VOs, the policies that drive then and so on, together with the knowledge to apply that metadata intelligently

    Managing semantic Grid metadata in S-OGSA

    Get PDF
    Grid resources such as data, services, and equipment, are increasingly being annotated with descriptive metadata that facilitates their discovery and their use in the context of Virtual Organizations (VO). Making such growing body of metadata explicit and available to Grid services is key to the success of the VO paradigm. In this paper we present a model and management architecture for Semantic Bindings, i.e., firstclass Grid entities that encapsulate metadata on the Grid and make it available through predictable access patterns. The model is at the core of the S-OGSA reference architecture for the Semantic Grid

    A Linked Data Approach to Sharing Workflows and Workflow Results

    No full text
    A bioinformatics analysis pipeline is often highly elaborate, due to the inherent complexity of biological systems and the variety and size of datasets. A digital equivalent of the ‘Materials and Methods’ section in wet laboratory publications would be highly beneficial to bioinformatics, for evaluating evidence and examining data across related experiments, while introducing the potential to find associated resources and integrate them as data and services. We present initial steps towards preserving bioinformatics ‘materials and methods’ by exploiting the workflow paradigm for capturing the design of a data analysis pipeline, and RDF to link the workflow, its component services, run-time provenance, and a personalized biological interpretation of the results. An example shows the reproduction of the unique graph of an analysis procedure, its results, provenance, and personal interpretation of a text mining experiment. It links data from Taverna, myExperiment.org, BioCatalogue.org, and ConceptWiki.org. The approach is relatively ‘light-weight’ and unobtrusive to bioinformatics users

    Document Navigation: Ontology or Knowledge Organization System?

    Get PDF
    Bioinformatics relies heavily on web resources for information gathering. Ontologies are being developed to fill the background knowledge needed to drive Semantic Web applications. This paper discusses how formal ontologies are not always suited for document navigation on the web. Converting ontologies into a model with looser semantics, allows cheap and rapid generation of useful knowledge systems. The message is that ontologies are not the only knowledge artefact needed; vocabularies and other classification schemes with weaker semantics have their role and are the best solution in certain circumstances

    Knowledge Representation for Web Navigation

    Get PDF
    Representations of domain knowledge range from those that are ontologically formal, semantically rich to those that are ontologically informal and semantically weak. Representations of knowledge are important in many tasks, one of which is the support of travel around information spaces through the identification and linking of concepts in a field. In this paper we explore how representations of ontologically informal, semantically weak domain knowledge as captured by the Simple Knowledge Organisation System (SKOS) can enable a system to take advantage of the large number of existing ontological representations to support semantic linking of Web based information and thus facilitate information travel

    Grid metadata management: requirements and architecture

    Full text link
    Metadata annotations of grid resources can potentially be used for a number of purposes, including accurate resource allocation to jobs, discovery of services, and precise retrieval of information resources. In order to realize this potential on a large scale, various aspects of metadata must be managed. These include uniform and secure access to distributed and independently maintained metadata repositories, as well as management of metadata lifecycle. In this paper we analyze these issues and present a service-oriented architecture for metadata management, called S-OGSA, that addresses them in a systematic way

    Architectural Patterns for the Semantic Grid

    Get PDF
    The Semantic Grid reference architecture, S-OGSA, includes semantic provisioning services that are able to produce semantic annotations of Grid resources, and semantically aware Gridservices that are able to exploit those annotations in various ways. In this paper we describe the dynamic aspects of S-OGSA by presenting the typical patterns of interaction among these services. A use case for a Grid meta-scheduling service is used to illustrate how the patterns are applied in practice

    Linked Data Publication of Live Music Archives and Analyses

    Get PDF
    date-added: 2017-12-22 15:39:21 +0000 date-modified: 2017-12-22 15:53:18 +0000 keywords: Linked Data, Semantic Audio, Semantic Web, live music archive local-url: https://link.springer.com/chapter/10.1007/978-3-319-68204-4_3 bdsk-url-1: https://iswc2017.semanticweb.org/wp-content/uploads/papers/MainProceedings/221.pdf bdsk-url-2: https://dx.doi.org/10.1007/978-3-319-68204-4_3date-added: 2017-12-22 15:39:21 +0000 date-modified: 2017-12-22 15:53:18 +0000 keywords: Linked Data, Semantic Audio, Semantic Web, live music archive local-url: https://link.springer.com/chapter/10.1007/978-3-319-68204-4_3 bdsk-url-1: https://iswc2017.semanticweb.org/wp-content/uploads/papers/MainProceedings/221.pdf bdsk-url-2: https://dx.doi.org/10.1007/978-3-319-68204-4_3We describe the publication of a linked data set exposing metadata from the Internet Archive Live Music Archive along with detailed feature analysis data of the audio files contained in the archive. The collection is linked to existing musical and geographical resources allowing for the extraction of useful or nteresting subsets of data using additional metadata. The collection is published using a ‘layered’ approach, aggregating the original information with links and specialised analyses, and forms a valuable resource for those investigating or developing audio analysis tools and workflows

    Evaluating the semantic web: a task-based approach

    Get PDF
    The increased availability of online knowledge has led to the design of several algorithms that solve a variety of tasks by harvesting the Semantic Web, i.e. by dynamically selecting and exploring a multitude of online ontologies. Our hypothesis is that the performance of such novel algorithms implicity provides an insight into the quality of the used ontologies and thus opens the way to a task-based evaluation of the Semantic Web. We have investigated this hypothesis by studying the lessons learnt about online ontologies when used to solve three tasks: ontology matching, folksonomy enrichment, and word sense disambiguation. Our analysis leads to a suit of conclusions about the status of the Semantic Web, which highlight a number of strengths and weaknesses of the semantic information available online and complement the findings of other analysis of the Semantic Web landscape
    corecore